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SUMMARY 

A telemetry system has been used t o  measure afterbody pressures on free- 
f ly ing  wind-tunnel models of the Apollo Command Module. These measurements 
were made i n  the  Ames 14-inch and 20-inch hypersonic helium tunnels at Mach 
nunibers of 10, 15, and 21 and i n  the Ames 1-foot shock tunnel a t  a Mach number 
i n  a i r  of 14. The corresponding Reynolds numbers, based on model diameter, 
were 360,000, 1,150,000, and 975,000 i n  helium, and 11,800 i n  air. 

Pressures were measured on the  most windward s ide  of the  afterbody f o r  
angles of a t t ack  from 0' t o  -40' and comparisons were made between the  data  
obtained from the  f r e e - f l i g h t  tests and ex i s t ing  da ta  obtained by various 
invest igators  using sting-mounted tes t  models. 
obtained from s t i n g  tests agreed w e l l  with the  present  measurements obtained 
with free-f lying models; but  i n  other  cases, the  disagreement w a s  as la rge  as 
30 percent.  
mounted models probably were due pr imari ly  t o  differences i n  the  types and 
geometry of t he  s t i n g  arrangements used. 
body pressure measured i n  a i r  compared with the afterbody pressure measured i n  
helium were a l s o  observed. 

In  some cases the measurements 

The differences observed i n  the  measurements obtained with s t i ng -  

Substant ia l  differences i n  the  after- 

These differences w e r e  found t o  be s t rongly depend- 
g l e  of a t t ack  of the  model and i n  agreement with t h e o r e t i  

INTRODUCTION 

The existence of unknown, and ge, model-support-interference 
e f f e c t s  has been a troublesome p r  
The interference e f f e c t s  are d i f f i c u l t  t o  evaluate a t  hypersonic speeds, 

~ espec ia l ly  i n  s tudies  of 
such as the Apollo capsu 

experimental t e s t i n g  i n  wind tunnels.  

flows over afterbodies of en t ry  shapes 
.. -* 

The recent  j$ve40p t r y  system, reporte  reference $1, 
es t  lnodels'in f r e e  f l i g h t ,  has 

surements: -free 02 %upport interference.  
s used t o  obtain pressures on the  afterbody of Apollo type 

it p o s s + ~ ~ e  t o  
Phis p r e s s w e  

t e s t  models a t  hypersonic Mach numbers and the  r e s u l t s  of these tes ts  a r e  
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presented "iln ' tBiB repc3rtl Wle "pi" r e  measurements a r e  
compared with ex is t ing  data obtained with sting-mounted t e s t  models. 
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T e s t  F a c i l i t i e s  

Three f a c i l i t i e s  were used i n  t h e  present investigation, the  Ames 14-inch 
and 20-inch hypersonic helium tunnels and t h e  Ames 1-foot shock tunnel. The 
iL4-inch helium tunnel was used f o r  tes ts  a t  Mach numbers 10 and 21 w h i l e  the  
20-inch helium tunnel w a s  used f o r  tes ts  a t  Mach number 15. These tunnels, 
described i n  d e t a i l  i n  references 2 and 3, are blowdown tunnels with i n t e r -  
changeable ax ia l ly  symmetric nozzles. 
conducted i n  the  1-foot shock tunnel. 
operates a t  a tes t - sec t ion  stagnation enthalpy of about 4600 Btu/lb and a free- 
stream Mach number of approximately 14. 
up t o  20 milliseconds. 

Tests a t  Mach number 14 i n  air  were 
This tunnel, described i n  reference 4, 

The t e s t  t i m e s  i n  t h i s  tunnel range 

Model Launching Apparatus 

In  the  helium tunnels the models were launched by a pneumatic launcher 
similar to the  one described i n  reference 5.  This launcher w a s  i n s t a l l e d  in  
the tunnel downstream of the  t e s t  sect ion.  The launcher is  shown schemati- 
c a l l y  i n  f igure  1 and photographs of the  launcher in s t a l l ed  i n  the  14-inch 
helium tunnel are shown i n  f igure 2 .  The pneumatic launcher consisted of a 
p is ton  and rod on which was  placed a cup-like holder f o r  support of the  model 
during launch. The p i s ton  w a s  contained i n  a tube and "f i r ing" of the  t e s t  
model w a s  accorrrplished by releasing a res t ra in ing  pin.  
the  p is ton  was  vented t o  tunnel s t a t i c  pressure while the  downstream s ide  w a s  
subjected to the  driving pressure, Fl, which w a s  set  a t  a predetermined value 
so  t h a t  t he  upstream port ion of the model t r a j ec to ry  terminated near the  
upstream edge of t he  viewing window. 
pressure, Fl, f o r  t he  launcher i s  described i n  the  appendix of t h i s  repor t . )  

The upstream side of 

(A method f o r  estimating the  required 

A necessary requirement fo r  the pneumatic launcher i n  the present e q e r i -  
mental program was the  capabi l i ty  of launching tes t  models without imparting 
ro l l i ng  or yawing motion. 
f ly ing  models were studied and it was c l ea r ly  evident t h a t  the  r o l l i n g  or 
yawing motion induced by the  launching process w a s  l e s s  than 0.2'. 

High-speed motion p ic tures  of a number of f r e e -  

In  the  1-foot shock tunnel, the t es t  models were simply suspended by 
s m a l l  nylon threads which burn away a t  the start of the flow, thereby releas- 
ing the model in to  a f r ee - f l i gh t  condition. A photograph of a typ ica l  t es t  

'model suspended by threads i n  the  shock tunnel is  shown i n  f igure  3. 

a Models 

The bas ic  geometry of the t e s t  models and the  locat ion of t he  afterbody 
pressure o r i f i ce  are shown i n  f igure&.  The outer  s h e l l  of the  models w a s  made 
2n two sections as shown by sketches and photographs i n  f igures  5 and 6. The 
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1 7  

f ron t  sec.Zim m s  Inat!i.e uf 732-a~~’ G&h’pro“o”i”sidfi f o r  a 
locat ion of the  center of gravi ty  could be retained on the model axis  or  
off s e t  v e r t i c a l l y  . 

The f o m r d  por t ion  of the test  models not only provided the  proper 
p. 

ba l l a s t ing  but, i n  the case of the  shock tunnel, it a l s o  served as a sh ie ld  to 
eliminate the coupling between the  plasma, i n  the shock layer  of the model, 
and the  telemetry un i t  (see discussion i n  ref. 1). T 

In  the  helium tunnels the  models were launched a t  zero angle of a t tack ,  
and by o f f se t t i ng  the  center of gravi ty  a pi tching o s c i l l a t i o n  i n  the  f r ee -  
f l i g h t  motion was  obtained which allowed! pressure measurements t o  be made 
through a wide angle-of-attack range. 
the shock tunnel because of the  l imited t e s t  time avai lable .  Thus i n  order 
t o  obtain pressure data  throughout the  desired angle-of-attack range i n  the  
shock tunnel, t e s t  models were i n i t i a l l y  suspended a t  various angles of attack. 

This technique could not be used i n  

The two sect ions of the models were threaded together and sealed s o  t h a t  
the inner port ion of the  model formed a sealed cavi ty  i n  which a known pres-  
sure could be maintained. ’I”nis pressure then served as a reference pressure 
f o r  the  pressure c e l l .  
es tabl ished i n  the  model by using a hypodermic needle which passed through 
the model holder (see f i g .  1) and then was inser ted through a s m a l l  rubber 
disk a t  the  r ea r  of the model (see f i g .  5 (a ) ) .  
the  needle was restrained so t h a t  the needle w a s  extracted as the model w a s  
launched. In the shock tunnel the reference pressure w a s  made equal t o  the  
pressure i n  the  t e s t  sect ion,  immediately p r i o r  to the  i n i t i a t i o n  of the run, 
by means of a 0.010-inch-diameter “vent” tube in s t a l l ed  i n  the  back of the  
model (see f i g .  5 (b)  ) . Tests showed t h a t  the  vent tube r e s t r i c t e d  the flow of 
a i r  su f f i c i en t ly  t h a t  no s igni f icant  change i n  the reference pressure occurred 
within the  short  t e s t  time of the shock tunnel. 

In  the  helium tunnel t e s t s  the reference p res sme  was 

The reference pressure l i ne  t o  

Pressure Telemetry System 

The telemetry uni t s  and pressure c e l l s  were the same as those described 
i n  reference 1. 
which i s  frequency modulated by a var iable  capacitance pressure c e l l .  The FM 
receiver had a tuning range of 105 t o  140 mc and a usable deviation bandwidth 
f o r  information content of k0.8 me. 

The telemetry uni t  consis ts  of a miniaturized o s c i l l a t o r  

The s e n s i t i v i t i e s  of the capacitance c e l l s  used were chosen t o  be com- 
p a t i b l e  with the  expected range of pressures t o  be measured and the  deviation 
bandwidth available.  
range of kO.05 p s i  d i f f e r e n t i a l  f o r  a frequency deviation of 0 t o  0.8 me and 
the  c e l l s  used t o  measure pressures a t  angles of a t t ack  had a range of kO.5 
p s i  d i f f e ren t i a l .  

The c e l l s  used to measure pressures a t  a = 0 had a 
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I n  both the helium f a c i l i t i e s  and the  shock tunnel t he  receiving antenna 
was  mounted d i r e c t l y  on the  tes t - sec t ion  windows. 
'the FM receiver was  recorded on a recording oscil lograph using a galvanometer 
which had a f l a t  frequency response range of 0 t o  I200 cps. 

The demodulated s igna l  from 

A The pos i t ion  and angle of a t t ack  of the free-f lying models were recorded 
with a high-speed movie camera which was  operated a t  a speed of about 2000 
frames per  second. 

The recording oscillograph, the high-speed camera,and the model launcher 
were s t a r t e d  i n  the  proper sequence by an automatic control  un i t .  This con- 
t r o l  unit  a l s o  provided a time reference "pulse" which was recorded simulta- 
neously on the camera f i lm  and the  oscil lograph record. This time reference 
mark, along with periodic timing marks on the  camera f i lm and the oscil lograph 
record, were then used t o  cor re la te  the  model pos i t ion  and a t t i t u d e  with the  
telemetered pressure data.  

TEST AND PROCEDURES 

T e s t  conditions are shown i n  the  following t ab le :  

K., T e s t  gas Re m 
10 helium 360,000 1 
15 helium 1,150,000 1 
21 helium 975 , 000 1 
14 a i r  11,800 9 05 

The estimated e r ro r  of pb/pt2 due t o  instrument errors,gage accuracies, 
and repea tab i l i ty  of tunnel conditions i s  +0.001 a t  a = 0 and kO.0025 a t  
a f 0, while the  estimated e r r o r  i n  angle is  k0.2' a t  
a f 0. a f 0 i s  due t o  possible  e r ro r s  i n  
time correlat ion of +O.OOO5 sec. 

a = 0 and +lo a t  
The higher e r r o r  i n  angle f o r  

Typical Data Records 

A t yp ica l  oscil lograph t r a c e  of the  telemetered data  and re la ted  frames 
from the motion p ic tures  are shown i n  f igure  7 f o r  a tes t  run i n  the  14-inch 
helium tunnel using a model with the  c.g. on the  model axis. A sketch of 

* t h e  tunnel tes t  sect ion showing the  t r a j e c t o r y  of t he  model i s  a l so  included 
&in f igure  7. The r e l a t i v e  high pressure measured a t  the  beginning of the  
f r ee - f l i gh t  t ra jec tory ,  po in t  A of f igure  7, i s  believed t o  be due t o  i n t e r -  
ference between the  wake of the  model and the  model launcher. A s  the  model 
,moves upstream it appears from the  change i n  pressure t h a t  the  wake suddenly 
;loses and the  interference-free base pressure reading i s  obtained (from 
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o? f i g :  7"). ?h& ic$ *'the wak; "; losed was approxi - 
mately 7 model diameters forward of the extended model launcher. 

A t yp ica l  data  record and photographs f o r  a t e s t  run using a model with* 
the c.g. displaced v e r t i c a l l y  from the model axis a re  presented i n  f igure  8. 
Also  included i n  t h i s  f igure  i s  the  angle-of-attack history,  obtained from the  
motion-picture f i l m ,  f o r  the  model when it i s  i n  the viewing area  of t he  t e s t  
section. For t h i s  p a r t i c u l a r  run afterbody pressure da ta  w e r e  obtained i n  tke 
angle range of about -25' to -45'. 

RESULTS AND DISCUSSION 

The measured valkes of afterbody pressure, Pb, normalized using f r e e -  
stream impact pressure, pt,, a r e  presented as a function of angle of a t tack  i n  
f igure  9 f o r  f r e e - f l i g h t  t e s t s  i n  helium flow and i n  f igure  10 f o r  f r ee - f l i gh t  
tes ts  i n  a i r  i n  the shock tunnel. 
ing models have been f a i r ed  and arrowheads inser ted t o  indicate  the order of 
da ta  acquis i t ion.  

I n  f igure  9, the  data  obtained with p i t ch -  

From t h i s  f igure  it i s  apparent t h a t  the differences obtained f o r  the 
model increasing i n  angle of a t tack  and data  obtained during the same run with 
the  model decreasing i n  angle of a t tack  a re  s m a l l ,  while differences between 
runs are s l i g h t l y  la rger  but s t i l l  within the  estimated accuracy of the  data.  

Although i n  the  helium tunnels the  pi tching models were launched a t  
a = Oo, data  were i n  general not obtained f o r  angles of a t tack  i n  the range 
near 0' to about -15' because of the  interference of t he  model-launching 
apparatus with the model base flow f i e l d  during the  i n i t i a l  port ion of the 
t r a j ec to ry  where the  model angle of a t t ack  is s m a l l .  Data were obtained, how- 
ever, f o r  angles of a t tack  from -5O to -15' i n  one of the  t e s t s  i n  the  20-inch 
helium tunnel (see f i g .  9(b)  ) . 
angle-of -attack range from about -5' to about -1.5' appear to be somewhat lower 
than the  pressure a t  
gators (see,e.g., ref .  6)  but a t  t h i s  t i m e  the  reasons f o r  t h i s  phenomenon a re  
s t i l l  unknown. 

In  t h i s  case the  measured base pressures i n  the 

a = 0'. This behavior has been noted by other i nves t i -  

Variation i n  Afterbody Pressure With Mach Number 

The var ia t ions i n  afterbody pressure with Mach number f o r  the  t e s t s  i n  - 
helium, obtained from cross p l o t s  of f igure  9, a r e  presented i n  f igure 11 f o r  
a number of angles of a t tack .  From t h i s  f igure  it i s  apparent t h a t  within the  
s c a t t e r  of the data  f o r  a given a there  i s  no s ign i f i can t  var ia t ion  i n  the  
r a t i o  of base pressure to free-stream impact pressure f o r  the Apollo capsule, 
over the  Mach number range from 10.1 to 21. 
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Comparison of Results Obtained i n  A i r  and H e l i u m  

A comparison of afterbody pressure measurements obtained i n  helium and 
air i s  made i n  f igure  12. The measurements made i n  these two gases were a t  
considerably d i f f e ren t  Reynolds numbers and stream enthalpy levels but  the  
comparisons made are considered va l id  i n  l i g h t  of the  da ta  presented i n  f i g -  
$.re 9 of reference 7. Those da ta  showed t h a t  the afterbody pressure on the  
Apollo capsule i s  relatively unaffected by var ia t ions i n  Reynolds numbers from 
6 ~ 1 0 ~  to 2.3~10~ or by var ia t ions i n  stream enthalpies from 130 Btu/lb to 
4000 Btu/lb. Also shown i n  f igure  12 a re  theore t ica l  values of the  afterbody 
pressure f o r  a = 0' obtained using the  method of Denison and Baum (ref.  8)  
and f o r  a = - 3 3 O  obtained using two-dimensional blast-wave theory as used i n  
reference 7 and CD values of 0.97 f o r  helium and 1.03 f o r  air. 

A t  a = 0 Denison and B a r n  theory predic t s  values which agree very well 
with experimental data f o r  both air and helium, while a t  
theory agrees reasonably w e l l  with the  experimental data.  

a = -33' blast-wave 

From both experiment and theory it is  apparent t h a t  a t  a = 0, the Apollo 
afterbody pressure obtained f o r  t e s t s  i n  a i r  i s  nearly twice the value 
obtained f o r  t e s t s  i n  helium. This difference between the a i r  and helium 
data  decreases as the  model pi tches  u n t i l  a t  about a = -30' the  data curves 
cross and the  value f o r  tes ts  i n  helium becomes higher than the  value f o r  
t e s t s  i n  air .  This crossing of the data carves i s  predicted by blast-wave 
theory which indicates  t h a t  a t  
than the pressures i n  helium. 

a = -33' the  pressure i n  air  should be lower 

Comparisons of Data f o r  Free-Flying and Sting-Mounted Models 

Presented i n  f igures  13 and 1 4  are comparisons between the present data  
obtained with f r e e  -flying models and data  from s t ing  -mounted models presented 
i n  references 6, 7, 9, 10, and 11. 
ments a t  t he  midpoint of t he  model afterbody, ( s /d  = 0.95) except f o r  r e f e r -  
ence 10 where the  pressure o r i f i c e  was located about 10 percent of t he  
afterbody length farther back. The front-face radius,  the  corner radius,and 
the afterbody angle of t he  t es t  models along w i t h  Mach number, Reynolds num- 
ber,and w a l l  temperature r a t i o  f o r  a l l  data  i n  f igures  13 and 14 are given 
i n  t ab le  1. 

All values given are f o r  pressure measure- 

?"ne base pressures obtained by telemetry from free-f lying models a t  a 
near 0 ( f ig s .  1-3 and 14) a re  generally equal to or less than those obtained 
w i n g  sting-mounted models whereas a t  angles of a t tack  less than about -15' 
( f i g .  14) t he  f r ee - f l i gh t  da ta  a re  generally equal to or grea ter  than the  

Although i n  some cases there  i s  
good agreement between f r ee - f l i gh t  and sting-mounted data, f o r  other  cases 
the disagreement w a s  as large as 30 percent. It i s  noted that although there  
i s  considerable var ia t ion  i n  Mach nmber,  Reynolds number,and w a l l  tempera- 
Q u r e  r a t i o  of the  data  being compared ( t ab le  I ) ,  there  appears to be no 
obvious cor re la t ion  between these parameters and t h e  differences i n  the data.  
Therefore it is  f e l t  t h a t  t he  differences i n  data  obtained f o r  a given tes t  

* d a t a  obtained with sting-mounted models. 
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gas are primarily dGe t o  differences i n  the types and geometry a t  the s t ing  
arrangements used. In  general, it appears that, if  proper care  is taken, 
readings of afterbody pressure reasonably free of s t i n g  interference can be 
obtained with sting-mounted models, a t  least f o r  blunt  shapes. However, t he  
f r ee - f l i gh t ,  telemetry technique of fe rs  a more r e l i a b l e  method f o r  obtaining 
values on the afterbody of b lunt  configurations. 

CONCLUDING 

Measurements of the  afterbody pressure on free-f lying tes t  models of an 
Apollo capsule i n  a i r  and helium have been made using an FM telemetry system. 
It w a s  found t h a t  the  r a t i o  of afterbody pressure t o  free-stream impact pres -  
sure f o r  a given angle of a t t ack  d id  not vary appreciably with Mach number 
over the  Mach number range from 10 t o  21. Comparisons were made between the  
measured values and theo re t i ca l  values obtained by the  method of Denison and 
B a r n  a t  a = 0' and between measured values and theo re t i ca l  values obtained 
by blast-wave theory a t  Good agreement was  obtained between exper- 
iment and theory f o r  both theo re t i ca l  cases presented. 

a = -33'. 

Substant ia l  differences i n  the l e v e l  of t he  afterbody pressure i n  a i r  and 
helium were observed, the magnitude of t he  differences being s t rongly depen- 
dent on the  model angle of a t tack .  A t  angles of a t t ack  near zero the  after-  
body pressures i n  helium are subs tan t ia l ly  lower than i n  a i r  as i s  predicted 
by Denison and Bawn theory. A t  large negative angles of a t tack ,  t he  reverse 
i s  t rue ;  the  afterbody pressure on the  most windward s ide  i s  higher i n  helium 
than i n  air ,  as indicated by blast-wave theory. 

The present experimental r e su l t s ,  obtained from free-f lying models by 
telemetry, were compared with published r e s u l t s  obtained by several  i nves t i -  
gators  using sting-mounted tes t  models. Differences as large as 30 percent 
w e r e  noted i n  the  measurements probably because of differences i n  the types 
and geometry of the s t i n g  arrangements used. In some cases the  measurements 
obtained from s t i n g  t e s t s  agreed closely with the present  r e s u l t s  obtained 
from models i n  f r e e  f l i g h t ,  indicat ing that r e l i a b l e  afterbody pressure meas- 
urements f o r  blunt  shapes can be made with sting-supported tes t  models i f  
su f f i c i en t  care i s  taken. The d i f f i cu l ty ,  of course, is  knowing when the  
interference e f f ec t s  have been minimized. 
used i n  the  present study provides a simple and d i r e c t  means f o r  obtaining 
afterbody pressures free of interference e f f ec t s .  

The f r ee - f l i gh t  telemetry technique 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Ju ly  1.3, 1965 
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METHOD FOR ESTIMATING REQUIRED DRIVING PRESSURE 

Estimates of t he  driving pressure,  Fr, f o r  the pneumatic launcher used i n  
the  helium tunnels can be calculated as follows. 

- 
The veloci ty  of t he  t es t  model a t  launch, u1, and the  time i n  seconds, t, - needed to t r a v e l  any required distance,  s 1, (see f i g .  15) are governed by the 

r e  l a t  ions hip s 

t =  /%C - 
D 

where D i s  the  aerodynamic drag of the model and mm i s  the mass of the 
model. The time, t, i s  considered f i r s t  and the  maximum value i s  the time f o r  
a f r ee - f a l l i ng  object to t r a v e l  from rest a t  the  v e r t i c a l  height, h l ,  (see 
f ig .  15 )  to the  edge of the  tunnel boundary layer.  This defines the optimum 
r a t i o  between the model m a s s  mm and the  aerodynamic drag D which allows 
f o r  maximum test  time. The required launch veloci ty  to achieve a forward 
t r a j ec to ry  of length s1 (see f i g .  1-51 can be calculated from equation (1) 
and a procedure f o r  estimating the driving pressure of t he  launcher is  as 
follows . 

- 

The launch ve loc i ty  i s  r e l a t ive ly  s m a l l  (u1 < 100 f p s )  and the  reservoir  
pressure required to achieve t h i s  ve loc i ty  m a y  be estimated i f  the  driving gas 
i s  assumed to remain i n  equilibrium and the expansion i s  isentropic  during the  
launching process. Since F2 << p1 the  e f f ec t s  of c2 were neglected. The 
launch veloci ty  is  re la ted  to the  driving pressure by the relat ionship 

and by using equation (1) we obtain a convenient expression f o r  estimating the 
reservoir  pressure 

9 



I 6.l 

where (see f i g .  15) ' 

cross-sectional area of the  pis ton,  f t 2  *P 

D f  f r i c t i o n  drag within t h e  launcher, lb 

21 length of reservoir ,  f t  

2, 

- 
- 

length of p i s ton  stroke, f t  

Mp m a s s  of p i s ton  ensembly including model holder, slugs 

reservoir  pressure, l b / f t2  

pressure on back face of the pis ton, lb/f t2  

- 
P l  

p2 
- 

and the energy function i s  g ivenby  

where y i s  the spec i f ic  heat  r a t i o .  The energy avai lable  f o r  various 
r a t i o s  of reservoir  length to pis ton  stroke i s  indicated i n  f igure  16. 
evident t h a t  l i t t l e  i s  to be gained by using reservoir  length la rger  than 
about twice the p i s ton  stroke. 
of 1 inch, a p is ton  stroke of 6 inches,and a reservoir  length of 12 inches 
w e r e  used i n  the 14-inch helium tunnel and p i s ton  diameter of 2 inches, a 
p i s ton  s t roke of 9 inches,and a reservoir  length of 18 inches were used i n  
the 20-inch helium tunnel. 

It is 

I n  the present  appl icat ion a p is ton  diameter 

10 
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